Ontology Content Patterns as Bridge for the Semantic Representation of Clinical Information

C. Martínez-Costa¹; S. Schulz²

¹Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Austria; ²Institute of Medical Biometry and Medical Informatics, Freiburg University Medical Center, Germany

Keywords
Electronic Health Records, Semantics, SNOMED CT, Knowledge Representation, HL7 CDA, OpenEHR

Summary
Objective: Semantic interoperability of the Electronic Health Record (EHR) requires a rigorous and precise modelling of clinical information. Our objective is to facilitate the representation of clinical facts based on formal principles.

Methods: We here explore the potential of ontology content patterns, which are grounded on a formal and semantically rich ontology model and can be specialised and composed.

Results: We describe and apply two content patterns for the representation of data on tobacco use, rendered according to two heterogeneous models, represented in openEHR and in HL7 CDA. Finally, we provide some query exemplars that demonstrate a data interoperability use case.

Conclusion: The use of ontology content patterns facilitate the semantic representation of clinical information and therefore improve their semantic interoperability. There are open issues such as the scalability and performance of the approach if a logic-based language is used. Implementation decisions might determine the final degree of semantic interoperability, influenced by the state of the art of the semantic technologies.

Correspondence to:
Catalina Martínez-Costa
Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz
LKH-Eingangzentrum, 3. und 5. Stock
Auenbruggerplatz 2
8036 Graz, Austria
E-mail: catalina.martinez@medunigraz.at

http://dx.doi.org/10.4338/ACI-2014-04-RA-0031
received: April 3, 2014
accepted: June 10, 2014
published: July 23, 2014

Citation: Martínez-Costa C, Schulz S. Ontology content patterns as bridge for the semantic representation of clinical information Appl Clin Inf 2014; 5: 660–669
http://dx.doi.org/10.4338/ACI-2014-04-RA-0031
1. Introduction

The notion of clinical model patterns has become popular in activities targeting the semantic interoperability of electronic health records (EHRs) [1, 2]. As design patterns they address recurrent modelling issues and are related to information models, which they constrain by following certain rules, and for which they create content definitions for use cases like ‘acute care summary’ or ‘radiology report’.

Design patterns should keep separate the model of use from the model of meaning [3]. Different combinations of information model structures will often produce different models of use with the same meaning, so-called iso-semantic models. Whereas information models ideally constitute the (epistemic) model of use, the domain terminologies constitute the (ontological) model of meaning. These models should complement each other, but in practice there are considerable overlaps, which complicate the identification of iso-semantic content.

In this work, we introduce ontology content patterns for representing clinical information based on a formal reference model underpinned by ontological principles, which allows providing clinical information with precise semantics, and thus paves the way to compute the equivalence between syntactically different but semantically same expressions. As much as it would be desirable that such patterns provide rigid principles to encode clinical information, we have to admit that a single way of encoding a given piece of information cannot be enforced. The EU SemanticHealthNet (SHN) network [4] addresses this problem by proposing a semantic infrastructure based on an ontological framework [5], together with a set of ontology content patterns [6] that use this framework as a reference. The framework consists of three kinds of ontologies: (i) top-level; (ii) information entity and (iii) medical domain, expressed in OWL 2 DL [7]. How this framework interacts with content patterns will be explained in the following.

We provide a subset of top-level ontology content patterns represented as subject-predicate-object (SPO) triples. By means of their specialization they capture the semantic representation of typical clinical information. Our interoperability use case focuses on two heterogeneous clinical models rendered in openEHR [8] and in HL7 CDA [9].

Finally we show some query exemplars to briefly describe some of the benefits of the representation of the clinical information according to the framework proposed.

2. Methods

2.1 Ontological Framework

Ontology content patterns are based on a set of related ontologies which conform the SHN framework, consisting of:

- A top-domain ontology, BioTopLite [10] (prefix btl:) providing a set of canonical top-level classes and relationships, like btl:Condition, btl:InformationObject, btl:Quality, btl:Process or btl:hasPart, btl:bearerOf, respectively.
- A domain ontology, SNOMED CT [11] (prefix sct:), a huge clinical terminology partially built on formal-ontological principles. Selected SNOMED CT content will be placed under top-level classes provided by BioTopLite. The use of a standard terminology is essential for the interoperability of EHRs across care settings, as SNOMED CT is currently being used in more than fifty countries.
- An EHR information entity ontology (prefix shn:) for representing pieces of information like diagnostic statements, plans, orders, etc. They are outcomes of clinical actions like observations, investigations, or evaluations. All classes of this ontology are represented as subclasses of the top-level class btl:InformationObject.

Information entities will refer to (types of) clinical entities by means of the relation btl:represents which can be further specialized by shn:isAboutSituation and shn:isAboutQuality for referring to a patient clinical situation [12] or a quality indirectly or directly observed of some material object or process.
2.2 Content Patterns

Ontology content patterns provide a particular view on ontology, tailored to the needs of particular use cases [13]. They can be organized in hierarchies, in which specializations follow a similar paradigm to the object-oriented design, and in which their composition permits to cover larger modeling use cases [14]. We propose the use of ontology content patterns as a “proxy” which allows representing clinical information according to the ontology-based representation previously described and which prevents users from a deep knowledge of ontology and description logics syntax.

Our assumption is that a broad range of clinical models can be represented by the specialisation and composition of a limited set of ontology content patterns. In [15], we demonstrated the creation and application of such patterns for representing information on heart failure in a bottom-up approach. We found out that they could be described by means of specialisation and composition based on a set of higher-level patterns (top-level patterns). Here, we describe two top-level patterns and demonstrate their use for representing clinical information from two clinical models on tobacco use. The patterns are encoded as SPO triples, enhanced by a cardinality attribute. Note that the predicates are defined at the level of the pattern and are not taken from the source ontologies. They constitute direct links between classes, whereas OWL DL object properties only connect individuals.

Top-level patterns can be specialized and composed by following certain cardinality and value restrictions. On the one hand, cardinality constraints place a constraint on the number of instances in which some predicate is used with different values. Note that at this level the instances are object classes, not domain individuals. Value range constraints limit the possible values for some predicate.

The first top-level pattern we will describe (►Table 1) can be used to represent some piece of information about a particular clinical situation of the patient. Clinical situations, as described in [12], correspond to SNOMED CT findings. S1 provides the clinical situation in focus. S2 represents the process performed to acquire the information. (e.g. diagnostic, physical examination, history taking, etc.) Finally, S3 specifies any information aspect related with the clinical situation in focus (e.g. severity, certainty, etc.)

The second top-level pattern (►Table 2) is the observation result pattern which describes the result of an observation or assessment about some quality of a given clinical situation. The first two rows (O1 and O2) describe the quality observed / assessed (e.g. mass intake) and the clinical situation, respectively. O3,O4 and O5 rows describe the result of the observation / assessment; O6 the scale in which the observed value is based (e.g. qualitative, quantitative). Finally, the last row, O7 represents the process performed to acquire the information.

2.2.1. OWL DL representation

The transformation of these top-level patterns into OWL DL allows the precise formalization of the ontological framework proposed, which permits the use of DL reasoning. DL reasoning is useful for the achievement of two important goals: On the one hand, it can be used for detecting equivalent clinical information from iso-semantic models [16]. This includes the ability to compare different distributions of content between information models and ontologies/terminologies, in order to test whether they are semantically equivalent. For instance, there are two possible representations to encode a breast cancer diagnosis when using SNOMED CT: (1) using one diagnosis information model element and the concept Breast cancer or (2) using two information model elements for representing the disease diagnosed Cancer and the disease location Breast structure. An appropriate representation, supported by a DL reasoner should discover that both representations are semantically equivalent.

In our use case, DL reasoning can provide an advanced exploitation of clinical information by means of semantic query possibilities such as retrieving patients who use tobacco, independently of the form of the tobacco (e.g. cigar, pipe, etc.) and of the type of consumption (e.g. snuff or smoking).

►Table 3 depicts the translation of the patterns into OWL DL, according to the proposed ontological framework. By following the triple-based pattern representation shown in ►Table 1 and ►Table 2, the subject (SUB) and object (OBJ) correspond to ontology classes and the predicate to an OWL DL expression. These DL expressions use one or more object properties from our ontologies, together with different quantifier, as a result of the underlying ontological model. In case the latter is
modified, the change can be performed at this place, whereas the pattern representation remains the same.

2.2.2. OpenEHR and HL7 CDA tobacco use models

We apply these patterns to an excerpt of an HL7 CDA and an openEHR model, which describe information about a person’s tobacco consumption. Each one had been designed by different requirements and for different contexts.

The openEHR model is part of the heart failure summary, developed by SHN, using the openEHR representation available in the Clinical Knowledge Manager (CKM) [17]. It collects detailed information about tobacco consumption, obtained from different sources, targeted to investigate the tobacco use in heart failure patients.

The HL7 CDA model follows one of the templates defined as part of the Consolidated CDA (C-CDA) solution [18] which provides a library of reusable CDA templates. The template comprises the data elements and vocabulary requirements needed for meeting the EHR Certification Criteria in support of the U.S. Meaningful Use Stage 2 [19] and might be extended depending on additional information requirements. Thus, this CDA model is very generic and only records a person’s smoking status within the social history section of the patient record. ►Table 4 shows an excerpt of some data elements and terminology value requirements of either model.

The openEHR model records: the current tobacco smoking activity (e.g. Current tobacco smoker); the form of the tobacco (e.g. cigarette, in the above table “<<” means all subclasses) and the typical tobacco amount per day (e.g. 10 cigarettes). The HL7 CDA model provides only a data element for recording the tobacco smoking status. The status value is constrained to a set of SNOMED CT codes to meet the certification criteria in support of Meaningful Use Stage 2 (e.g. Current every day smoker).

3. Results

In order to get the semantic representation of some fictitious clinical data rendered according the openEHR and HL7 CDA models, we have to (i) specialize/compose the top-level patterns described in section 2 and (ii) establish the correspondences between the model data element / value pairs and the pattern triples. As clinical data examples we will represent the following pairs (cf. ►Table 4): OpenEHR: Smoking status/Smoker (77176002); Form/Cigarette smoking tobacco (66562002); and typical smoked amount/10 per day; HL7 CDA: Smoking status/Heavy cigarette smoker (230063004).

Some SNOMED CT terms are misleading. E.g., Smoker does not refer to a person but to a smoking situation since it is placed in the clinical finding hierarchy. Thus, the use of the same term with different meanings by the EHR systems will hamper semantic interoperability. The knowledge model they conform to can be used to determine the real meaning of the term. However this model might be faulty or incomplete as it happens with the terms Cigarette smoking tobacco and Cigarette tobacco smoker, which refer to a substance and finding, respectively, without providing any relationship between both. Therefore, there will be no interoperability if systems use both of them arbitrarily. ►Table 5 shows the code and full specified name (FSN) of the SNOMED CT terms we use in the upcoming examples and our suggested re-naming based on their parent concepts.

Next, we show the top-level patterns specialisation required to represent the clinical data examples and provide the correspondences between the patterns and the openEHR and HL7 CDA models. Finally we describe some query exemplars on the data.

3.1 Semantic representation of the openEHR clinical data

►Table 6 depicts the specialisation of the top-level ontology content patterns from Section 2 in order to represent the clinical data conforming to openEHR. The left and right columns show the correspondences between the model data elements/value pairs and the pattern triples. The smoking status and the form are both mapped to the Information about clinical situation pattern, since the smoking status refers to a Patient smoking situation and the form is part of the Situation class definition.
tion, refining it. The typical amount smoked is mapped to the Observation result pattern since it is an assessment result. In the same table, the triples obtained are provided. Triples with minimum cardinality one are mapped to the model (e.g. shn:InformationItem ‘describes situation’ shn:ClinicalSituation). Value constraints have been applied constraining the object part of the triple (e.g. shn:InformationItem ‘describes situation’ shn:ClinicalSituation) to the specific clinical situation (sct:TobaccoSmokingSituation).

3.2 Semantic representation of the HL7 CDA clinical data

Table 7 depicts the result of specialising the top-level content patterns and the correspondences with regards to the HL7 CDA data. The smoking status, as in the openEHR case, is mapped to the Information about clinical situation pattern.

The Meaningful Use implementation of the HL7 CDA model defines heavy smoker as at least 10 cigarettes/day. However, the definition is particular to this HL7 implementation and might vary across institutions or depend on research study purposes.

3.3 Querying the semantic representation of the openEHR and HL7 CDA clinical data

Table 8 depicts DL query exemplars based on the OWL DL representation of the openEHR and HL7 CDA data. The triple-based representation is transformed into OWL according to Table 3. We have formulated the following queries, asking at different information granularity level: (Q1) information about tobacco smokers; (Q2) information about heavy smokers; (Q3) information about cigarette smokers and heavy smokers; (Q4) information about patients who smoke more than 15 cigarettes/day.

The four queries use DL reasoning. Q1 ask for tobacco smokers. It will retrieve both openEHR and HL7 CDA like data since a Heavy tobacco smoking situation is a subclass of Tobacco smoking situation. Q2 ask for heavy smoker without specifying the form. It retrieves both data instances, since Heavy cigarette smoker is a subclass of Heavy smoker and we have defined that a Heavy cigarette smoker means at least 10 cigarettes/day, which is the typical smoked amount provided by the OpenEHR data. Q3 specifies the query asking by those who are heavy smokers and smoke using cigarettes, which is the same as asking for Heavy tobacco cigarette smoking situation. Finally, Q4 asks by those who typically smoke more than 15 cigarettes/day, and do not retrieve anything, since they smoke 10/day.

4. Discussion and Conclusion

From the above we can state (i) that it is not possible to impose a single model representation across diverse clinical communities (e.g. public health vs. primary care vs. specialised care) and clinical practices, and (ii) that the requirements will dictate the level of information detail needed. Then, by considering these clinical limits, the immediate question is which degree of semantic interoperability we can offer, or up to which degree we can make the above models semantically interoperable.

SHN, in contrast to other proposals does not intend to provide a new EHR standard. Instead it provides an intermediate semantic layer able to deal with the unavoidable heterogeneity which arises when clinical information is represented across or within the same medical domain. SHN’s semantic infrastructure is based on an ontological framework and a set of ontology content patterns that uses this framework as a reference. It proposes the use of ontology content patterns to assist in information modelling, preventing the user from fully understanding the underlying, complex, formal axioms. Content patterns should act as guide for the mapping of clinical model information into their semantic representation. Our hypothesis is that the information represented by clinical models can be represented by constraining a set of content patterns. Content patterns can be constrained by specialisation and composition to cover the needs of different use cases. They do it by following a formal framework and a set of constraints which keep them semantically interoperable. They should
be flexible and expressive enough to encode clinical models data but at the same time follow strict constraining principles. One of the main research questions which have still to be investigated is whether there are a finite number of top-level patterns from which the others will specialize. We only can argue that representation of the information on heart failure [15] provided a high degree of information heterogeneity (e.g. medical history, lab test results, medication administration, diagnosis, symptoms, physical examination results, etc.) and that a reduced number of top-level patterns were derived from that. Besides, the technological uptake of this approach will require a series of challenges (human, computational) to be met. We think that human challenges such as the ontology-based representation of present clinical information could be alleviated by using semantic artefacts such as ontology content patterns, which might be implemented by specific tools. However, computational challenges in most cases require the evolution of present tools and resources, which might lead to agree on compromises between performance and functionality. Scalability problems are a known issues in logic-based models, therefore formalisms, not based on logic, can be considered depending on the particular purpose (e.g. data validation vs. data query). On top of that, their use by professionals requires of tools that support their use (e.g. building and maintenance of patterns, mapping of data supported by patterns, query design, query interfaces, etc.) The challenge now for the clinical / informatics communities is to grow libraries of such patterns, to help the design of future EHR repositories and message standards.

Clinical relevance

Improving semantic interoperability of clinical information enhance medical practice by providing clinicians with homogeneous access to patient clinical information spread out across heterogeneous clinical systems.

Acknowledgments

This work has been funded by the SemanticHealthNet Network of Excellence within the EU 7th Framework Program, Call:FP7-ICT- 2011–7, agreement 288408. http://www.semantichealthnet.eu/.

Conflict of Interest

The authors declare that they have no conflicts of interest in the research

Human Subjects Protections

Human and/or animal subjects were not included in the project
Table 1 Information about Clinical Situation Content Top-Level Pattern

<table>
<thead>
<tr>
<th>#N</th>
<th>Subject</th>
<th>Predicate</th>
<th>Cardinality</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>shn:InformationItem</td>
<td>‘describes situation’</td>
<td>1..*</td>
<td>shn:ClinicalSituation</td>
</tr>
<tr>
<td>S2</td>
<td>shn:InformationItem</td>
<td>‘results from process’</td>
<td>1..*</td>
<td>btl:Process</td>
</tr>
<tr>
<td>S3</td>
<td>shn:InformationItem</td>
<td>‘has attribute’</td>
<td>0..*</td>
<td>shn:InformationAttribute</td>
</tr>
</tbody>
</table>

Table 2 Observation result about process quality Content Top-Level Pattern

<table>
<thead>
<tr>
<th>#N</th>
<th>Subject</th>
<th>Predicate</th>
<th>Cardinality</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>shn:ObservationResult</td>
<td>‘describes quality’</td>
<td>1..1</td>
<td>btl:Quality</td>
</tr>
<tr>
<td>O2</td>
<td>btl:Quality</td>
<td>‘is quality of’</td>
<td>1..*</td>
<td>shn:ClinicalSituation</td>
</tr>
<tr>
<td>O3</td>
<td>shn:ObservationResult</td>
<td>‘has observed value’</td>
<td>1..1</td>
<td>btl:ValueRegion</td>
</tr>
<tr>
<td>O4</td>
<td>btl:ValueRegion</td>
<td>‘has value’</td>
<td>0..1</td>
<td>xml:datatype</td>
</tr>
<tr>
<td>O5</td>
<td>btl:ValueRegion</td>
<td>‘has units’</td>
<td>0..1</td>
<td>shn:MeasurementUnits</td>
</tr>
<tr>
<td>O6</td>
<td>btl:ValueRegion</td>
<td>‘has scale’</td>
<td>0..1</td>
<td>shn:Scale</td>
</tr>
<tr>
<td>O7</td>
<td>shn:ObservationResult</td>
<td>‘results from process’</td>
<td>1..*</td>
<td>btl:Process</td>
</tr>
</tbody>
</table>

Table 3 OWL DL representation of the top-level patterns

<table>
<thead>
<tr>
<th>Predicate</th>
<th>OWL DL expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘describes situation’</td>
<td>SUBJ subClassOf shn:isAboutSituation only OBJ</td>
</tr>
<tr>
<td>‘describes quality’</td>
<td>SUBJ subClassOf shn:isAboutQuality only OBJ</td>
</tr>
<tr>
<td>‘results from process’</td>
<td>SUBJ subClassOf btl:isOutcomeOf some OBJ</td>
</tr>
<tr>
<td>‘has attribute’</td>
<td>SUBJ subClassOf btl:hasInformationAttribute some OBJ</td>
</tr>
<tr>
<td>‘is quality of’</td>
<td>SUBJ subClassOf btl:inheresIn some OBJ</td>
</tr>
<tr>
<td>‘has observed value’</td>
<td>SUBJ subClassOf btl:Quality and btl:projectsOnto some OBJ</td>
</tr>
<tr>
<td>‘has units’</td>
<td>SUBJ subClassOf btl:isRepresentedBy only(shn:hasInformationAttribute some OBJ)</td>
</tr>
<tr>
<td>‘has value’</td>
<td>SUBJ subClassOf btl:isRepresentedBy only(shn:hasValue some OBJ)</td>
</tr>
<tr>
<td>‘has scale’</td>
<td>SUBJ subClassOf btl:isRepresentedBy only(shn:hasInformationAttribute some OBJ)</td>
</tr>
</tbody>
</table>
Table 4 Data elements and values (SNOMED CT) of an excerpt of openEHR and HL7 tobacco models

<table>
<thead>
<tr>
<th>openEHR</th>
<th>HL7 CDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Element</td>
<td>Value</td>
</tr>
<tr>
<td>Smoking status</td>
<td>77176002 8392000 8517006 160616005</td>
</tr>
<tr>
<td>Form</td>
<td><<39953003</td>
</tr>
<tr>
<td>Typical smoked amount</td>
<td>259032004</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5 Meaning and renaming of the SNOMED CT concepts (ID and fully specified name)

<table>
<thead>
<tr>
<th>SNOMED CT code & FSN</th>
<th>Renaming suggestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>77176002 Smoker (finding)</td>
<td>Tobacco smoking situation</td>
</tr>
<tr>
<td>66562002 Cigarette smoking tobacco (substance)</td>
<td>Cigarette tobacco smoke substance</td>
</tr>
<tr>
<td>65568007 Cigarette smoker (finding)</td>
<td>Cigarette tobacco smoking situation</td>
</tr>
<tr>
<td>230063004 Heavy cigarette smoker (finding)</td>
<td>Heavy cigarette tobacco smoking situation</td>
</tr>
</tbody>
</table>

Table 6 OpenEHR: “Smoker, cigarette smoker, 10 cigarettes per day”; Correspondences and Pattern triples

<table>
<thead>
<tr>
<th>Data Element/ Value</th>
<th>Triple representation</th>
<th>#N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking Status/ smoker (finding)</td>
<td>shn:InformationItem 'describes situation' sct:TobaccoSmokingSituation shn:InformationItem 'results from process' sct:HistoryTaking</td>
<td>#S1 #S2</td>
</tr>
<tr>
<td>Form/ cigarette smoker (finding)</td>
<td>shn:InformationItem 'describes situation' sct:CigaretteTobaccoSmokingSituation shn:InformationItem 'results from process' sct:HistoryTaking</td>
<td>#S1 #S2</td>
</tr>
<tr>
<td>Typical smoked amount/ 10 cigarette /day</td>
<td>shn:ObservationResult 'describes quality' shn:MassIntake shn:MassIntake 'is quality of' sct:CigaretteTobaccoSmokingSituation shn:ObservationResult 'has observed value' btl:ValueRegion btl:ValueRegion 'has value' 10 btl:ValueRegion 'has units' sct:PerDay</td>
<td>#O1 #O2 #O3 #O4 #O5</td>
</tr>
</tbody>
</table>
Table 7 HL7 CDA “Heavy cigarette tobacco smoker (>=10)”; Correspondences and Pattern triples

<table>
<thead>
<tr>
<th>Data Element/Value</th>
<th>Triple representation</th>
<th>#N</th>
</tr>
</thead>
</table>
| Smoking Status/ Heavy Cigarette Tobacco Smoker | shn:InformationItem 'describes situation' sct:HeavyCigaretteSmokingSituation
shn:InformationItem 'results from process' sct:Evaluation | #S1 | #S2 |

Table 8 DL Query examples

#Q1

```sparql
shn:InformationItem
    and btl:isOutcomeOf some sct:HistoryTaking
    and shn:isAboutSituation only sct:TobaccoSmokingSituation
```

#Q2

```sparql
shn:InformationItem
    and btl:isOutcomeOf some shn:Evaluation
    and shn:isAboutSituation only sct:HeavyTobaccoSmokingSituation
```

#Q3

```sparql
shn:InformationItem
    and btl:isOutcomeOf some shn:Evaluation
    and shn:isAboutSituation only sct:HeavyTobaccoSmokingSituation
    and shn:isAboutSituation only sct:CigaretteTobaccoSmokingSituation
```

#Q4

```sparql
shn:ObservationResult
    and shn:isAboutQuality only (shn:MassIntake
    and btl:inheresIn some sct:CigaretteTobaccoSmokingSituation
    and btl:projectsOnto some (btl:ValueRegion and btl:isRepresentedBy only
    (shn:hasInformationAttribute some sct:PerDay shn:hasValue some int[>15])))
```
References