Archive

Applying Electronic Medical Records in health care

Journal: Applied Clinical Informatics
ISSN: 1869-0327
DOI: https://doi.org/10.4338/ACI-2015-11-RA-0165
Issue: Vol. 7: Issue 2 2016
Pages: 341-354

  1. Boonstra A, Broekhuis M. Barriers to the acceptance of electronic medical records by physicians from systematic review to taxonomy and interventions. BMC health services research 2010; 10 (1): 231. DOI:10.1186/1472-6963-10-231
  2. Carayon P et al. Implementation of an electronic health records system in a small clinic: the viewpoint of clinic staff. Behaviour & Information Technology 2009; 28 (1): 5-20. DOI:10.1080/01449290701628178
  3. Abdekhoda M et al. Factors affecting information technology acceptance by health information management (HIM) staff of Tehran University Of Medical Sciences’ Hospitals based on the technology acceptance model (TAM) in 2011. Payavard Salamat 2013; 7 (4): 287-298.
  4. Abdekhoda M et al. Information technology acceptance in health information management. Methods of information in medicine 2014; 53 (1): 14-20. DOI:10.3414/ME13-01-0079
  5. Chaudhry B. et al. Systematic review: impact of health information technology on quality, efficiency, and costs of medical care. Annals of internal medicine 2006; 144 (10): 742. DOI:10.7326/0003-4819-144-10-200605160-00125
  6. Putzer GJ, Park Y. Are physicians likely to adopt emerging mobile technologies? Attitudes and innovation factors affecting smartphone use in the Southeastern United States. Perspectives in health information management/AHIMA, American Health Information Management Association 2012; 9(Spring)
  7. Davis FD, Bagozzi RP, Warshaw PR. User acceptance of computer technology: a comparison of two theoretical models. Management science 1989; 35 (8): 982-1003. DOI:10.1287/mnsc.35.8.982
  8. Davis FD. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly 1989; Sep 1: 319-40
  9. Venkatesh V, Davis FD. A theoretica l extension of the technology acceptance model: four longitudinal field studies. Manage Sci 2000; 46 (2): 186-204. DOI:10.1287/mnsc.46.2.186.11926
  10. Fishbein M, Ajzen I. Belief, attitude, intention, and behavior: An introduction to theory and research. Addison-Wesley Pub Co 1975
  11. Rogers EM. Diffusion of innovations: Free Pr 1995
  12. Koivunen M. Acceptance and use of information technology among nurses in psychiatric hospitals. 2009. Available at http://doria32-kk.lib.helsinki.fi/handle/10024/43661
  13. Duyck P et al. User acceptance of a picture archiving and communication system - applying the unified theory of acceptance and use of technology in a radiological setting. Methods of information in Medicine 2008; 47 (2): 149-156.
  14. Gupta A. Exploring the acceptance and barriers to usage of information and communication technology by Irish occupational therapists. 2010
  15. Rogers EM. Diffusion of innovations. 5th Ed. New York: Free Press; 2003
  16. Lee TT. Nurses’ adoption of technology: application of Rogers’ innovation-diffusion model. Applied Nursing Research 2004; 17 (4): 231-238.
  17. Chew F, Grant W, Tote R. Doctors on-line: using diffusion of innovations theory to understand internet use. Family Medicine-Kansas City 2004; 36: 645-650.
  18. Morton ME. Use and acceptance of an electronic health record: factors affecting physician attitudes [Retrieved From Proquest Dissertations And Theses Database. (Umi No. 3327272)]: Drexel University; 2008
  19. Legrisa P, Inghamb J, Collerettec P. Why do people use information technology? A critical review of the technology acceptance model. Information & Management 2003; 40 (3): 191-204. DOI:10.1016/S0378-7206(01)00143-4
  20. Gefen D, Karahanna E, Straub DW. Trust and TAM in online shopping: An integrated model. MIS quarterly 2003: 51-90
  21. Schepers J, Wetzels M. A meta-analysis of the technology acceptance model: Investigating subjective norm and moderation effects. Information & Management 2007; 44 (1): 90-103. DOI:10.1016/j.im.2006.10.007
  22. Ma Q, Liu L. The technology acceptance model: a meta-analysis of empirical findings. Journal of Organizational and End User Computing (JOEUC) 2004; 16 (1): 59-72. DOI:10.4018/joeuc.2004010104
  23. Lee Y, Kozar KA, Larsen KRT. The technology acceptance model: Past, present, and future. Communications of the Association for Information Systems 2003; 12 (50): 752-780.
  24. Davis FD, Bagozzi RP, Warshaw PR. Extrinsic and Intrinsic Motivation to Use Computers in the Workplace1. Journal of Applied Social Psychology 1992; 22 (14): 1111-1132. DOI:10.1111/j.1559-1816.1992.tb00945.x
  25. Zhang N, Guo X, Chen G. IDT-TAM integrated model for IT adoption. Tsinghua Science & Technology 2008; 13 (3): 306-311. DOI:10.1016/S1007-0214(08)70049-X
  26. Tung F-C, Chang S-C, Chou C-M. An extension of trust and TAM model with IDT in the adoption of the electronic logistics information system in HIS in the medical industry. International Journal of Medical Informatics 2008; 77 (5): 324-335. DOI:10.1016/j.ijmedinf.2007.06.006
  27. Ardis MA, Green JA. Successful introduction of domain engineering into software development. Bell Labs Technical Journal 1998; 3 (3): 10-20. DOI:10.1002/bltj.2112
  28. Atkinson NL. Developing a questionnaire to measure perceived attributes of eHealth innovations. American Journal of Health Behavior 2007; 31 (6): 612-621. DOI:10.5993/AJHB.31.6.6
  29. Völlink T, Meertens R, Midden CJ. Innovating ‘diffusion of innovation’theory: Innovation characteristics and the intention of utility companies to adopt energy conservation interventions. Journal of Environmental Psychology 2002; 22 (4): 333-344. DOI:10.1006/jevp.2001.0237
  30. Wu JH et al. Testing the technology acceptance model for evaluating healthcare professionals’ intention to use an adverse event reporting system. International Journal for Quality in Health Care 2008; 20 (2): 123-129. DOI:10.1093/intqhc/mzm074
  31. Murphy E. Issues in the adoption of broadband‐enabled learning. British journal of educational technology 2005; 36 (3): 525-536. DOI:10.1111/j.1467-8535.2005.00490.x
  32. Cho J, Park D, Lee HE. Cognitive factors of using health apps: Systematic analysis of relationships among health consciousness, health information orientation, eHealth literacy, and health app use efficacy. Journal of medical Internet research 2014; 16(5)
  33. Conrad ED. Willingness to use IT innovations: A hybrid approach employing diffusion of innovations and technology acceptance models: Southern Illinois University Carbondale; 2009
  34. Kendall JD et al. Receptivity of Singapore’s SMEs to electronic commerce adoption. The Journal of Strategic Information Systems 2001; 10 (3): 223-242. DOI:10.1016/S0963-8687(01)00048-8
  35. Greer TH, Murtaza MB. Web personalization: The impact of perceived innovation characteristics on the intention to use personalization. Journal of Computer Information Systems 2003; 43 (3): 50-55.
  36. Faiers A, Cook M, Neame C. Towards a contemporary approach for understanding consumer behaviour in the context of domestic energy use. Energy Policy 2007; 35 (8): 4381-4390. DOI:10.1016/j.enpol.2007.01.003
  37. Wilkins MAJ. The health information manager as change agent in adopting electronic health record technology in hospitals: Capella University; 2009
  38. Nair SV. Benefits and security of electronic health record (EHR) use by pediatric staff: A technology acceptance model (TAM)-based quantitative study: Doctor of Philosophy thesis. CAPELLA UNIVERSITY; 2011
  39. Kowitlawakul Y. Technology acceptance model: Predicting nurses’ acceptance of telemedicine technology (eICU®). 2008
  40. Holden RJ, Karsh BT. The technology acceptance model: its past and its future in health care. Journal of Biomedical Informatics 2010; 43 (1): 159-172. DOI:10.1016/j.jbi.2009.07.002
  41. Subramanian GH. A replication of perceived usefulness and perceived ease of use measurement. Decision Sciences 1994; 25 (5‐6): 863-874. DOI:10.1111/j.1540-5915.1994.tb01873.x
  42. Igbaria M, Iivari J. The effects of self-efficacy on computer usage. Omega 1995; 23 (6): 587-605. DOI:10.1016/0305-0483(95)00035-6
  43. Pai FY, Huang KI. Applying the technology acceptance model to the introduction of healthcare information systems. Technological Forecasting and Social Change 2011; 78 (4): 650-660. DOI:10.1016/j.techfore.2010.11.007
  44. Ortega Egea JM, Román González MV. Explaining physicians’ acceptance of EHCR systems: an extension of TAM with trust and risk factors. Computers in Human Behavior 2011; 27 (1): 319-332. DOI:10.1016/j.chb.2010.08.010
  45. Gagnon M-P et al. Systematic review of factors influencing the adoption of information and communication technologies by healthcare professionals. Journal of Medical Systems 2012; 36 (1): 241-277. DOI:10.1007/s10916-010-9473-4
  46. Yu P, Li H, Gagnon M-P. Health IT acceptance factors in long-term care facilities: A cross-sectional survey. International Journal of Medical Informatics 2009; 78 (4): 219-229. DOI:10.1016/j.ijmedinf.2008.07.006
  47. Oh S, Ahn J, Kim B. Adoption of broadband Internet in Korea: the role of experience in building attitudes. Journal of Information Technology 2003; 18 (4): 267-280. DOI:10.1080/0268396032000150807
  48. Sanayei A, Ansari A, Ranjbarian B. A hybrid technology acceptance approach for using the E-CRM information system in clothing industry. International Journal of Information Science and Management (IJISM) 2012: 15-25

You may also be interested in...

1.
P. Beschoner, M. Braun

Nervenheilkunde 2007 26 3: 125-133

2.
A descriptive history and cross-sectional survey of use, usability, and satisfaction

Research Article

F. H. J. M. Cillessen (1), P. F. de Vries Robbé (1), M. C. J. Biermans (1)

Appl Clin Inform 2017 8 2: 502-514

https://doi.org/10.4338/ACI-2016-08-RA-0137

3.

State of the Art / Best Practice Paper

Supplementary Material

H. Silverman (1), C. U. Lehmann (2), B. Munger (1)

Appl Clin Inform 2016 7 1: 177-190

https://doi.org/10.4338/ACI-2015-10-SOA-0141